If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4=79
We move all terms to the left:
x^2-4-(79)=0
We add all the numbers together, and all the variables
x^2-83=0
a = 1; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·1·(-83)
Δ = 332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{332}=\sqrt{4*83}=\sqrt{4}*\sqrt{83}=2\sqrt{83}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{83}}{2*1}=\frac{0-2\sqrt{83}}{2} =-\frac{2\sqrt{83}}{2} =-\sqrt{83} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{83}}{2*1}=\frac{0+2\sqrt{83}}{2} =\frac{2\sqrt{83}}{2} =\sqrt{83} $
| (6x-1)=(6x+30) | | 15x-x-0x-3x-1=7 | | x=180-9x-5 | | x=180-9x-9 | | -20j+6j+18j-9j+17=3 | | 2n^2-12n=-10n | | 4/2x=9 | | 2=3/5*2+b | | -0z-8z+2z+19z+5=-2 | | 1=3/5*1+b | | 1=3/5(1)+b | | 1=3/51+b | | 14=w+1 | | (5y-2)=28 | | 4m=5=35-2m | | 2x+13-x=11 | | 3.8g+3=1.8g+13 | | e3-16=7 | | -4(x)^2+4=2(x)^2-8 | | x=1.6x-3 | | 1.5c+7.6=40.6 | | 0.56=x+0.2x | | 155=-x+87 | | 90-x=193 | | y=9.6y+(30-17) | | x/3=18-3x | | 3m+33=9 | | 27+3x-1=5x+12 | | b=7+8 | | 7=-2x+9-x^2+2x | | 1x+87=80 | | 5x-5+4x+8=360 |